The FHWA Travel Model Improvement Program Workshop over the Web The Travel Model Development Series: Part I – Travel Model Estimation presented by Thomas Rossi Yasasvi Popuri Cambridge Systematics, Inc. March 12, 2009

Webinar Outline

- Session 1: Introduction October 16, 2008
- Session 2: Data Set Preparation November 6, 2008
- Session 3: Estimation of Non-Logit Models December 11, 2008
- Session 4: Estimation of Logit Models February 10, 2009

3

Webinar Outline - Note Revisions! (continued)

- Session 5: Disaggregate and Aggregate
 Validation Procedures March 12, 2009
- Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009*
- Session 7: Highway and Transit Assignment Processes – May 7, 2009

Webinar Outline - Note Revisions! (continued)

- Session 8: Evaluation of Model Validation Results – June 9, 2009
- NEW SESSION Session 9: Real Life Experiences in Model Development, Webinar Wrap-Up – July 16, 2009

E

Note on Session 6

Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009

- This is an optional session, requested by reviewers of the original webinar outline
- More detail, more math on logit models
- No homework
- Therefore, Session 5 homework will be reviewed at the beginning of <u>Session 7</u>

The Model Validation Process

- We will be discussing the overall model validation process in Session 8, but...
- One of the key concepts in model validation is that each component of a model must be validated individually
- This session deals with validating the various types of models we have seen so far in the webinar

7

The New FHWA Model Validation Manual Is Coming!

- Later this year!
- Rejected titles for the new manual:
 - "Son of Model Validation and Reasonableness Checking Manual"
 - "Validation Redux!"
 - "Validation II The Sequel!"
 - "Validation Wars Episode 5 The Modeler Strikes Back"

Validation Includes a Lot of Things

- Checks of input data
- Reasonableness/logic checks
- Comparison of model results to independent data sources
- Sensitivity checks

9

Aggregate vs. Disaggregate Validation

Disaggregate validation

- Explores how well model fits observed data at the household or individual level
- Involves defining subgroups of observations
- Compares model results with observed data to reveal systematic biases
- Plays more of a role in the model estimation phase

Aggregate validation

- Provides a general overview of model performance through regional travel characteristics
- Applies model at the regional, district, and zonal level

Aggregate vs. Disaggregate Validation

- Aggregate models require aggregate validation
- Disaggregate models require both aggregate and disaggregate validation

11

Aggregate Validation

- Assumes checks of model estimation have been done at time of estimation
- Generally involves applying models to perform reasonableness checks
- Comparison of model results to independent data sources
 - Remember, comparison is not always "matching"
- Looks at overall results and results by market segment

Cross-Classification Model – Trip Productions Review

	Independent Variable #1						
Independent Variable #2		Value 1	Value 2		Value n	Total	
	Value 1	Dep var value	Dep var value		Dep var value		
	Value 2	Dep var value	Dep var value		Dep var value		
	Value n	Dep var value	Dep var value		Dep var value		
	Total						

13

Checks of Trip Production Rates

- Comparisons to other sources
 - Other models
 - NHTS
 - NCHRP Report 365 and updates
- Marginal totals

Aggregate Trip Rates from Application

- Trips per household
- Trips by purpose
- Application to other than year of estimation data

15

Calibration of Trip Rates

- Where are the discrepancies?
- Are the discrepancies really wrong?
- Checking the input data

Regression Model – Attractions Review

$$Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_n X_n$$

where:

Y = Dependent variable

B_i = Estimated coefficients

X_i = Independent variables

The maximum likelihood estimators for coefficients are based on method of least squares

17

Aggregate Trip Rates from Application

- Trips per employee (by type)
- Trips by purpose
- Comparison to trip productions
- Application to other than year of estimation data

Calibration of Parameters

- Where are the discrepancies?
- Are the discrepancies really wrong?
- Checking the input data

19

20

Gravity Model - Trip Distribution Review

```
T_{ij} = \begin{array}{c} P_i \, A_j \, F(t)_{ij} \, K_{ij} \\ \hline \sum_j P_i \, A_j \, F(t)_{ij} \, K_{ij} \\ \hline \end{array} where:
T_{ij} = \begin{array}{c} \text{number of trips produced in zone i and attracted to zone j} \\ P_i = \begin{array}{c} \text{trips produced in zone i} \\ A_j = \begin{array}{c} \text{trips attracted to zone j} \\ \hline F(t)_{ij} = \text{friction factor from i to j (based on impedance t)} \\ K_{ij} = K \, \text{factor from i to j} \\ i = \begin{array}{c} \text{origin zone} \\ j = \end{array}
```

Trip Length Frequency Distribution The First (but not only) Check

- Use skims for both observed and model results
- · Check averages and fit
- Check by market segment
- Application to other than year of estimation data

21

Geographic Distribution

- Compare to expanded survey data
- District-to-district trips
- Intrazonal trips
- Application to other than year of estimation data

Gravity Model Calibration

- Trip length differences
 - Adjust friction factors or parameters from function
- Geographic differences
 - When are K-factors OK?
- As always, check input data

23

Logit Models Review

Probability function:

P(1) =
$$\frac{\exp(v_1)}{\exp(v_1) + \exp(v_2) + \dots + \exp(v_n)}$$

Used for:

- Mode choice
- Vehicle availability
- Destination choice
- And others...

Disaggregate Validation

- Two ways of doing this
 - Apply model to a data set independent of the estimation data set
 - Apply model to the estimation data set, report results by market segment

25

Disaggregate Validation (continued)

- Application to original data set, market segments
 - Household characteristics such as household size, income level, auto ownership, etc.
 - Traveler characteristics such as age, gender, driver's license status, and employment status
 - Zonal characteristics such as geographical location, area type, etc.
 - Trip characteristics such as trip distance, time, and cost

Example of Disaggregate Validation Choice 0 1 2 3+ Total

Choice	0	1	2	3+	Tota
Non Motorized					
Number Chosen	47.4	104.5	270.2	158.5	580.6
Standard Deviation Chosen	7.5	14.1	26.5	19.0	36.3
	*A	V	Α	Α	Α
Number Predicted	32.8	117.4	264.5	150.7	565.2
Auto Passenger					
Number Chosen	40.5	277.3	537.8	351.8	1,207.5
Standard Deviation Chosen	7.2	18.1	32.3	27.3	46.6
	V	***A	V	*V	Α
Number Predicted	47.1	197.7	549.8	386.1	1,180.7
Drive Alone					
Number Chosen	0.0	1,265.9	4,225.5	3,233.4	8,724.8
Standard Deviation Chosen	0.0	25.4	44.8	35.7	62.7
		**V	Α	Α	Α
Number Predicted	0.0	1,317.44	4,204.4	3,201.1	8,723.0
•	•	•	•	•	•
•	•	•	•	•	•
Total •	•	•	•	•	•
Number Chosen	119.3	1,770.7	5,326.2	3,928.7	11,144.9
Number Predicted	119.3	1,770.7	5,326.2	3,928.8	11,144.9

27

Aggregate Logit Model Checks Example: Mode Choice Model

- Mode shares by purpose and market segment
- Comparison of transit trips to results from onboard survey
 - Origin-destination
 - Trip purpose
 - Rider demographics

Aggregate Logit Model Checks Example: Mode Choice Model (cont'd)

- Transit assignment checks
 - Line/station boardings
 - Corridor volumes
 - Screenlines
 - Transfers

29

Mode Choice Calibration

- More than just regionwide validation "adjusting constants"
- Segmentation variables revising, adding, deleting
- Adjusting network parameter and settings
- Often "points back" to issues with earlier model steps

Vehicle Availabilty Model Validation **Example** County Variable Yasasvi Sarah Chris Region Gary Tony Sam % 0 Vehicles Observed Model 5% 3% 13% 8% 12% 8% 7% 3% 12% 5% 37% 24% 17% 11% % 1 Vehicles 35% 37% Observed Model 28% 27% 35% 38% 34% 34% 33% 33% 35%

1.78

1.90

38%

43%

16% 18%

1.58

1.79

1.74

1.82

0.88

1.11

34% 36%

13% 15%

1.44

1.59

31

% 2 Vehicles

% 3 Vehicles

Model

Observed Model

Observed

Average Vehicles

Vehicle Availability Model Calibration Example

37% 39%

1.55

1.65

22% 22%

1.86

1.95

38%

15% 15%

1.57

1.65

- Check 0-vehicle households data set, observed data
- Check county level validation
 - Why is VA overestimated in Chris and Lori Counties?

Sensitivity Checks

- Ensure that sensitivity of model outputs to changes in inputs is reasonable
- Apply model with known changes in inputs
 - Socioeconomic characteristics (growth)
 - For mode choice, time and cost

33

Homework Session 5